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Computational Bayesian inference aims to characterize the posterior probability distributions for param-
eters in statistical models. The complexity of many inference methods such as MCMC and variational
inference, however, typically scale poorly with the growing dimensions of model parameters and data.
A recent approach to deal with high or possibly even infinite-dimensional parameters is to exploit low-
dimensional structure in the inverse problem and approximately reformulate it in low-to-moderate dimen-
sions. In this presentation, we will introduce an information-theoretic analysis to bound the error from
reducing the dimensions of both parameters and data. This bound exploits gradient evaluations of the
log-likelihood function to identify relevant low-dimensional subspaces for these variables as well as reveal
reduced dimensions that result in minimal error. The benefit of the proposed dimension reduction tech-
nique will be demonstrated using several inference algorithms on applications including image processing
and data assimilation for aerodynamic flows.
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