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Inference in the Bayesian setting can be viewed as the problem of transforming a prior probability measure
into a posterior measure. This transformation is frequently performed in “one shot” by applying a single
update to an empirical or parametric approximation of the prior (e.g., Kalman and ensemble Kalman
transforms, or more general techniques based on measure transport). Yet the prior-to-posterior update can
also be viewed as a continuous transformation, governed by some dynamics on state space indexed by an
artificial time. There are infinitely many choices of such dynamics (both deterministic or stochastic), with
either finite or infinite time horizons, and any choice is associated with a transport equation encoding the
particular path of probability measures taken between prior and posterior. In computational schemes used
to realize these continuous-time transformations, a representation of the prior is initialized at time zero
and the dynamics are simulated until a stopping time is reached, at which point the resulting probability
distribution should approximate the posterior, if not realize it exactly. Computational simulation raises
further questions linked to the choice of dynamics: how to compute a “step” given available information,
how to choose step sizes, and how to determine stopping times for dynamics with infinite time horizons.
Yet it is not well understood how the underlying choice of dynamics influences our ability to realize complex
prior-to-posterior updates efficiently. In this work we elucidate connections among various frameworks
which have been proposed for continuous-time Bayesian inference, and how design choices therein interact
with the geometry of the probability manifold to influence performance.
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