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Chance-constrained optimization represents a challenging class of problems in stochastic programming.
First studied by Charnes and Cooper in the 1950s, this class of problems has seen significant interest
by researchers in both continuous and discrete optimization. Important recent results include the devel-
opment of schemes that have combined smoothing, sampling, and variational analysis. Yet much much
of these findings provide convergence guarantees to (appropriately defined) stationary points while com-
plexity guarantees for computing approximate global minimizers have remained elusive. We consider the
resolution of precisely such a gap for a subclass of such problems. We begin by considering the maxi-
mization of the probability P { ζ | ζ ∈ K(x) } over a closed and convex set X . When K is defined via
positively homogenous functions and ζ satisfies suitable distributional requirements, by leveraging prop-
erties of Minkowski functionals and recent findings in the context of non-Gaussian integrals of positively
homogenous functions, the probability of interest P { ζ | ζ ∈ K(x) } can be expressed as the expectation
of a Clarke-regular function F (•, ξ) with respect to an appropriately defined Gaussian density (or its
variant). In fact, we may show that a suitably defined compositional representation is convex. A regular-
ized variance-reduced stochastic approximation framework is provided for computing approximate global
minimizers of the original problem and rate and complexity guarantees are provided. In the second part
of the talk, we extend the results to a chance-constrained regimes and provide avenues for weakening the
distributional assumptions. We show that the chance-constrained problem is equivalent to an optimiza-
tion problem with compositional convex constraints. Complexity guarantees are provided for computing
an approximate global minimizer of the original problem via an inexact variance-reduced proximal-point
framework.
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