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Langevin Monte Carlo (LMC) and its stochastic gradient versions are powerful algorithms for sampling
from complex high-dimensional distributions, which are common in data science and machine learning
applications. To sample from the distribution with density π(x) ∝ exp(−U(x)), LMC generates the next
sample by taking a step in the gradient direction ∇U with a Gaussian perturbation. Expectations w.r.t.
the target distribution π are estimated by averaging over LMC samples. In ordinary Monte Carlo, it
is well known that the estimation error can be substantially reduced by replacing independent random
samples with quasi-random samples like low-discrepancy sequences. In this work, we show that the
estimation error of LMC can also be reduced by using quasi-random samples. Specifically, we propose
to use completely uniformly distributed sequences with certain low-discrepancy property to generate the
Gaussian perturbations (and stochastic gradients). Under smoothness and convexity conditions, we prove
that LMC with quasi-random samples achieves smaller errors than standard LMC. We provide rigorous
theoretical analysis supported by compelling numerical experiments to demonstrate the effectiveness of
our approach.
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