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Historically, metric entropy has played a significant role in various domains such as non-linear approxi-
mation [1-3], statistical learning theory [4-6], and empirical processes theory [7, 8]. Recent advances in
machine learning theory, and more specifically in deep learning, have led to renewed interest in the con-
cept of metric entropy. Indeed, metric entropy is at the heart of the study of the approximation-theoretic
properties and the statistical learning capabilities of deep neural networks [6, 9]. However, computing the
precise value of the metric entropy of a given function class turns out to be notoriously difficult in general;
exact expressions are available only in very few simple cases. For this reason, it has become common
practice to resort to characterizations of the asymptotic behavior of metric entropy only. Even this more
modest endeavor has turned out daunting in most cases. Consequently, a sizeable body of research exists
in the literature; the survey [10] illustrates the multiplicity of methods employed. Through this survey,
one is led to the insight that many of the standard methods implicitly rely on the computation of metric
entropy for infinite-dimensional ellipsoids, highlighting the importance of developing a general method
for this specific case. A first step toward such a general method was made in [11, 12]. Building on their
result, we present a new method for the derivation of the asymptotic behavior of the metric entropy for
infinite-dimensional ellipsoids. We further argue that our results provide a unified framework for the
derivation of the metric entropy rates of a wide variety of function classes, such as Besov spaces, Modu-
lation spaces, Sobolev spaces, and various classes of analytic functions, thereby retrieving and improving
standard results.
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