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In work by Bora et al. (2017), a mathematical framework was developed for compressed sensing guarantees
when the measurement matrix is Gaussian and the signal structure is the range of a Lipschitz function
(with applications to generative neural networks (GNNs)). We consider measurement matrices derived
by sampling uniformly at random rows of a unitary matrix (including subsampled Fourier measurements
as a special case). We prove the first known restricted isometry guarantee for compressed sensing with
GNNs and subsampled isometries, and provide recovery bounds. Recovery efficacy is characterized by
the coherence, a new parameter, which measures the interplay between the range of the network and
the measurement matrix. Furthermore, we propose a regularization strategy for training GNNs to have
favourable coherence with the measurement operator. We provide compelling numerical simulations that
support this regularized training strategy: our strategy yields low coherence networks that require fewer
measurements for signal recovery. This, together with our theoretical results, supports coherence as
a natural quantity for characterizing generative compressed sensing with subsampled isometries. This
poster is based on a recent co-authored publication in IEEE JSAIT.
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