Integration and function approximation on \mathbb{R}^d using equispaced points and lattice points

Yuya Suzuki

Aalto University, Finland yuya.suzuki@aalto.fi

In this work, I will discuss integrating and approximating functions over \mathbb{R}^d by equispaced points for d = 1 and lattice points for $d \geq 2$. In [1], together with D. Nuyens, we derived explicit conditions where lattice points can obtain error convergence of almost $n^{-\alpha}$ for integrating functions with smoothness $\alpha \in \mathbb{N}$ over the unbounded domain \mathbb{R}^d , where n is the number of quadrature points. When d = 1 and integration for α -smooth Gaussian Sobolev spaces is considered, in [2], together with Y. Kazashi and T. Goda, we proved that equispaced points achieve the optimal rate $n^{-\alpha}$ up to a logarithmic factor. In contrast, therein, the well known Gauss-Hermite quadrature was shown to achieve merely of the order $n^{-\alpha/2}$. Based on these results, I further consider the function approximation problem and possible use of lattice points on \mathbb{R}^d .

- [1] D. Nuyens and Y. Suzuki Scaled lattice rules for integration on \mathbb{R}^d achieving higher-order convergence with error analysis in terms of orthogonal projections onto periodic spaces. Mathematics of Computation, 92 (2023), pp. 307–347.
- [2] Y. Kazashi, Y. Suzuki and T. Goda. Sub-optimality of Gauss-Hermite quadrature and optimality of the trapezoidal rule for functions with finite smoothness. Accepted for publication in SIAM Journal on Numerical Analysis.