L^2 -APPROXIMATION AND NUMERICAL INTEGRATION ON GAUSSIAN SPACES

Robin Rüßmann

RPTU in Kaiserslautern, Germany ruessmann@mathematik.uni-kl.de

We study L^2 -approximation and integration on reproducing kernel Hilbert spaces $H(L_{\sigma})$ of d variables, where $d \in \mathbb{N}$ or $d = \infty$. Here, L_{σ} is given as the tensor product of univariate Gaussian kernels, i.e., $L_{\sigma}(x, y) := \prod_{j=1}^{d} \exp(-\sigma_j^2 \cdot (x_j - y_j)^2)$. These spaces are closely related to Hermite spaces $H(K_{\beta})$, where K_{β} is again of tensor product form, but based on univariate Hermite kernels, i.e., $K_{\beta}(x, y) :=$ $\prod_{j=1}^{d} \sum_{\nu=0}^{\infty} \beta_j^{\nu} \cdot h_{\nu}(x_j) \cdot h_{\nu}(y_j)$, where h_{ν} is the Hermite polynomial of degree ν . More precisely, for each space $H(L_{\sigma})$ there exists a corresponding space $H(K_{\beta})$ and an isometric isomorphism Q between both spaces such that one function evaluation of Qf needs only one function evaluation of f and vice versa.

Via this correspondence, we are able to constructively transform any algorithm for L^2 -approximation or integration on $H(K_\beta)$ into an algorithm for the same problem on $H(L_\sigma)$ and vice versa, preserving error and cost. In the case $d = \infty$, this allows us to investigate both problems on $H(L_\sigma)$ for the first time. In the case $d \in \mathbb{N}$, we are able to transfer some known results between the two function space settings.

Joint work with Michael Gnewuch (University of Osnabrück, Germany) and Klaus Ritter (RPTU in Kaiserslautern, Germany).