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In 1991, Moore [4] raised a question about whether hydrodynamics is capable of performing computations.
Similarly, in 2016, Tao [6] asked whether a mechanical system, including a fluid flow, can simulate a
universal Turing machine. Etnyre and Ghrist showed in [3] that contact geometry and fluid dynamics are
related through a mirror that reflects Reeb vector fields as Beltrami vector fields, allowing us to answer
these questions.

In this talk, we will present the construction in [1] of a “Fluid computer” in dimension 3 that uses this
“mirror” combining techniques developed by Alan Turing with symbolic dynamics and modern Geometry
(contact geometry). A completely different construction for the Euclidean metric is given in [2]. These
constructions reveal the existence of undecidable fluid paths. Tao’s question was motivated by a research
program to address the Navier–Stokes existence and smoothness problem ([5] and [6]). Could such a Fluid
computer be used to address this Millennium prize problem?

Time permitting, we will end up the talk with some speculative ideas of a Fluid computer construction à
la Feynman.
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