## View abstract

### Session II.6 - Computational Algebraic Geometry - Semi-plenary talk

Friday, June 16, 17:30 ~ 18:30

## Towards Agnes' symmetric Hermite interpolation

### Teresa Krick

#### University of Buenos Aires & CONICET, Argentina   -   This email address is being protected from spambots. You need JavaScript enabled to view it. document.getElementById('cloaka15bd3c1c95460495930697a695a2e92').innerHTML = ''; var prefix = '&#109;a' + 'i&#108;' + '&#116;o'; var path = 'hr' + 'ef' + '='; var addya15bd3c1c95460495930697a695a2e92 = 'kr&#105;ck' + '&#64;'; addya15bd3c1c95460495930697a695a2e92 = addya15bd3c1c95460495930697a695a2e92 + 'dm' + '&#46;' + '&#117;b&#97;' + '&#46;' + '&#97;r'; var addy_texta15bd3c1c95460495930697a695a2e92 = 'kr&#105;ck' + '&#64;' + 'dm' + '&#46;' + '&#117;b&#97;' + '&#46;' + '&#97;r';document.getElementById('cloaka15bd3c1c95460495930697a695a2e92').innerHTML += '<a ' + path + '\'' + prefix + ':' + addya15bd3c1c95460495930697a695a2e92 + '\'>'+addy_texta15bd3c1c95460495930697a695a2e92+'<\/a>';

I will describe an ongoing project started some years ago with Agnes, after she accidentally rediscovered Lagrange interpolation for multivariate symmetric polynomials when working together on univariate subresultants. I will present some of the preliminary results obtained towards the extension of this theory to symmetric Hermite interpolation, which corresponds to the case when there are nodes coalescences.

Joint work with Agnes Szanto.